Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2.
نویسندگان
چکیده
In this Letter, we present nondegenerate ultrafast optical pump-probe studies of the carrier recombination dynamics in MoS2 monolayers. By tuning the probe to wavelengths much longer than the exciton line, we make the probe transmission sensitive to the total population of photoexcited electrons and holes. Our measurement reveals two distinct time scales over which the photoexcited electrons and holes recombine; a fast time scale that lasts ∼ 2 ps and a slow time scale that lasts longer than ∼ 100 ps. The temperature and the pump fluence dependence of the observed carrier dynamics are consistent with defect-assisted recombination as being the dominant mechanism for electron-hole recombination in which the electrons and holes are captured by defects via Auger processes. Strong Coulomb interactions in two-dimensional atomic materials, together with strong electron and hole correlations in two-dimensional metal dichalcogenides, make Auger processes particularly effective for carrier capture by defects. We present a model for carrier recombination dynamics that quantitatively explains all features of our data for different temperatures and pump fluences. The theoretical estimates for the rate constants for Auger carrier capture are in good agreement with the experimentally determined values. Our results underscore the important role played by Auger processes in two-dimensional atomic materials.
منابع مشابه
Ultrafast Multi-Level Logic Gates with Spin-Valley Coupled Polarization Anisotropy in Monolayer MoS2
The inherent valley-contrasting optical selection rules for interband transitions at the K and K' valleys in monolayer MoS2 have attracted extensive interest. Carriers in these two valleys can be selectively excited by circularly polarized optical fields. The comprehensive dynamics of spin valley coupled polarization and polarized exciton are completely resolved in this work. Here, we present a...
متن کاملElectron dynamics in MoS2-graphite heterostructures.
The electron dynamics in heterostructures formed by multilayer graphite and monolayer or bulk MoS2 were studied by femtosecond transient absorption measurements. Samples of monolayer MoS2-multilayer graphite and bulk MoS2-multilayer graphite were fabricated by exfoliation and dry transfer techniques. Ultrafast laser pulses were used to inject electron-hole pairs into monolayer or bulk MoS2. The...
متن کاملAchieving Ultrafast Hole Transfer at the Monolayer MoS2 and CH3NH3PbI3 Perovskite Interface by Defect Engineering.
The performance of a photovoltaic device is strongly dependent on the light harvesting properties of the absorber layer as well as the charge separation at the donor/acceptor interfaces. Atomically thin two-dimensional transition metal dichalcogenides (2-D TMDCs) exhibit strong light-matter interaction, large optical conductivity, and high electron mobility; thus they can be highly promising ma...
متن کاملExciton-dominant electroluminescence from a diode of monolayer MoS2
In two-dimensional monolayer MoS2, excitons dominate the absorption and emission properties. However, the low electroluminescent efficiency and signal-to-noise ratio limit our understanding of the excitonic behavior of electroluminescence. Here, we study the microscopic origin of the electroluminescence from a diode of monolayer MoS2 fabricated on a heavily p-type doped silicon substrate. Direc...
متن کاملUltrafast charge transfer in atomically thin MoS<sub>2</sub>/WS<sub>2</sub> heterostructures
Van der Waals heterostructures have recently emerged as a new class of materials, where quantum coupling between stacked atomically thin two-dimensional layers, including graphene, hexagonal-boron nitride and transition-metal dichalcogenides (MX2), give rise to fascinating new phenomena1–10. MX2 heterostructures are particularly exciting for novel optoelectronic and photovoltaic applications, b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 15 1 شماره
صفحات -
تاریخ انتشار 2015